Parametric Equations and Vectors

KVZ Lv1

Prelude

New year, and I am now in year 12, learning more vectors… In tutoring today, I did some 3D vector problems containing parametric equations. I’m going to post my solutions here.

Problems

Question 16

Q. Use the shortest distance formula to find the shortest distance from the point P(1,2,3)P(-1, 2, 3) to the line defined parametrically by x=1+2tx = 1 + 2t, y=4+3ty = -4 + 3t and z=3+tz = 3 + t.

Define the line

[1+2t4+3t3+t]=[a1a2a3]+t[d1d2d3]\because \begin{bmatrix}1 + 2t \\ -4 + 3t \\ 3 + t\end{bmatrix} = \begin{bmatrix}a_1 \\ a_2 \\ a_3\end{bmatrix} + t \cdot \begin{bmatrix}d_1 \\ d_2 \\ d_3\end{bmatrix}

Match the coefficients

r(t)=[143]+t[231]\therefore \mathbf{r}(t) = \begin{bmatrix}1 \\ -4 \\ 3\end{bmatrix} + t \cdot \begin{bmatrix}2 \\ 3 \\ 1\end{bmatrix}

Shortest Line Formula

AP×v^|\vec{AP} \times \hat{\mathbf{v}}|

Calculation

Find AP\vec{AP}

OA=[143]  OP=[123]\vec{OA} = \begin{bmatrix}1 \\ -4 \\ 3\end{bmatrix} \ \ \vec{OP} = \begin{bmatrix}-1 \\ 2 \\ 3\end{bmatrix}

AP=OPOA=[123][143]=[260]\begin{aligned} \vec{AP} &= \vec{OP} - \vec{OA} \\ &=\begin{bmatrix}-1 \\ 2 \\ 3\end{bmatrix} - \begin{bmatrix}1 \\ -4 \\ 3\end{bmatrix} \\ &=\begin{bmatrix}-2 \\ 6 \\ 0\end{bmatrix} \end{aligned}

Use Shortest Distance Formula

AP×v^=i^j^k^260231=[6218]=291\begin{aligned} |\vec{AP} \times \hat{\mathbf{v}}| &= \left|\begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ -2 & 6 & 0 \\ 2 & 3 & 1\end{vmatrix}\right| \\ &= \left|\begin{bmatrix}6 \\ 2 \\ -18\end{bmatrix}\right| \\ &= 2\sqrt{91} \\ \end{aligned}

v=14|\mathbf{v}| = \sqrt{14}

AP×v^=29114=26\begin{aligned} \therefore |\vec{AP} \times \hat{\mathbf{v}}| &= \frac{2\sqrt{91}}{\sqrt{14}} \\ &= \sqrt{26} \\ \end{aligned}

Question 17

Q.

Line 1 has equation x=1+2sx = -1 + 2s, y=12sy = 1 - 2s and z=1+4sz = 1 + 4s.

Line 2 has equation x=1tx = 1 - t, y=ty = t and z=32tz = 3 - 2t.

Line 3 has equation x12=y1=z43\frac{x - 1}{2} = -y - 1 = \frac{z - 4}{3}.

Determine Line Equation

L1(s)=[111]+s[224]L2(t)=[103]+t[112]\begin{aligned} L_1(s) &= \begin{bmatrix}-1 \\ 1 \\ 1\end{bmatrix} + s \cdot \begin{bmatrix}2 \\ -2 \\ 4\end{bmatrix} \\ L_2(t) &= \begin{bmatrix}1 \\ 0 \\ 3\end{bmatrix} + t \cdot \begin{bmatrix}-1 \\ 1 \\ -2\end{bmatrix} \end{aligned}

For Line 3, define a new variable k, and set:\text{For Line 3, define a new variable k, and set:} \\

x12=ky1=kz43=k\begin{aligned} \frac{x - 1}{2} &= k \\ -y - 1 &= k \\ \frac{z - 4}{3} &= k \end{aligned}

from that, we get:\text{from that, we get:}

x=2k+1y=k1z=3k+4\begin{aligned} x &= 2k + 1 \\ y &= -k - 1 \\ z &= 3k + 4 \end{aligned}

L3(k)=[114]+k[213]\therefore L_3(k) = \begin{bmatrix}1 \\ -1 \\ 4\end{bmatrix} + k \cdot \begin{bmatrix}2 \\ -1 \\ 3\end{bmatrix}

Subquestion A

a) Show that line 1 and line 2 are parallel.

direction of L1(t)=[224]\text{direction of} \ L_1(t) = \begin{bmatrix}2 \\ -2 \\ 4\end{bmatrix}

direction of L2(s)=[112]\text{direction of} \ L_2(s) = \begin{bmatrix}-1 \\ 1 \\ -2\end{bmatrix}

[224]=2[112]\because \begin{bmatrix}2 \\ -2 \\ 4\end{bmatrix} = -2 \cdot \begin{bmatrix}-1 \\ 1 \\ -2\end{bmatrix}

L1(t)L2(s)\therefore L_1(t) \parallel L_2(s)

Subquestion B

b) Show that line 2 and line 3 intercept and find the angle between them.

L2(s)=L3(k)L_2(s) = L_3(k)

{1t=1+2k(1)t=1k(2)32t=4+3k(3)\begin{cases} \begin{aligned} 1 - t = 1 + 2k \quad &(1)\\ t = -1 - k \quad &(2)\\ 3 - 2t = 4 + 3k \quad &(3) \end{aligned} \end{cases}

Sub (2) into (1)Sub \ (2) \ into \ (1)

1(1k)=1+2k2+k=1+2kk=1\begin{aligned} 1 - (-1 - k) &= 1 + 2k \\ 2 + k &= 1 + 2k \\ k &= 1 \end{aligned}

Sub k=1 into (2)Sub \ k = 1\ into \ (2)

t=11t=2\begin{aligned} t &= -1 - 1 \\ t &= -2 \end{aligned}

Test with (3)Test \ with \ (3)

322=74+31=7\begin{aligned} 3 - 2 \cdot -2 &= 7 \\ 4 + 3 \cdot 1 &= 7 \end{aligned}

7=77 = 7

The solutions are consistent, hence, they are intersecting at t=2 and k=1\text{The solutions are consistent, hence, they are intersecting at} \ t = -2 \ \text{and} \ k = 1

The angle between two vectors can be found by:\text{The angle between two vectors can be found by:}

θ=arccos(abab)\theta = arccos(\frac{\mathbf{a}\cdot\mathbf{b}}{\lvert\mathbf{a}\rvert\cdot\lvert\mathbf{b}\rvert})

direction of L2(s)=[112]direction of L3(k)=[213]\begin{aligned} \text{direction of} \ L_2(s) &= \begin{bmatrix}-1 \\ 1 \\ -2\end{bmatrix} \\ \text{direction of} \ L_3(k) &= \begin{bmatrix}2 \\ -1 \\ 3\end{bmatrix} \end{aligned}

θ=arccos([112][213][112][213])=arccos(9614)=arccos(984)=arccos(714)+π2 (from CAS)\begin{aligned} \theta &= arccos(\frac{\begin{bmatrix}-1 & 1 & -2\end{bmatrix}\cdot\begin{bmatrix}2 & -1 & 3\end{bmatrix}}{\left|\begin{bmatrix}-1 & 1 & -2\end{bmatrix}\right|\cdot\left|\begin{bmatrix}2 & -1 & 3\end{bmatrix}\right|}) \\ &= arccos(\frac{-9}{\sqrt{6}\cdot\sqrt{14}}) \\ &=arccos(\frac{-9}{\sqrt{84}}) \\ &=arccos(\frac{\sqrt{7}}{14}) + \frac{\pi}{2} \text{ (from CAS)} \end{aligned}

  • Title: Parametric Equations and Vectors
  • Author: KVZ
  • Created at : 2026-02-01 23:40:26
  • Updated at : 2026-02-02 10:00:31
  • Link: https://kvznmx.com/2026/02/01/Parametric-Equations-and-Vectors/
  • License: This work is licensed under CC BY-NC-SA 4.0.